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Abstract 
Plant available water holding capacity (PAWC) interacts with climate to determine crop yield and is thus a 
key factor for predicting spatial yield variations. However, PAWC data at the required spatial resolution are 
not available because direct soil measurement is expensive and time-consuming. Here, we explore a new 
approach to inversely estimate PAWC from crop LAI time series using process-based modelling with 
APSIM together with machine learning. We used the APSIM model to simulate daily LAI of wheat in 
response to a wide range of PAWC across Australia. Vegetation metrics are derived from simulated LAI 
time series and were used together with climatic variables to build a machine learning model for predicting 
PAWC. The model explained 29% to 83% variation of PAWC across ten sites with contrasting climate. This 
implies a potentially more effective way of PAWC estimation, an alternative to direct soil sampling method.  
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Introduction 
Plant available water holding capacity (PAWC) refers to the maximum amount of water held between 
drained upper limit (DUL) and crop lower limit (CLL). PAWC has been identified as a key factor causing  
variability in yields of dryland crops (Lawes et al., 2009; Wong and Asseng, 2006). It interacts strongly with 
climate to determine crop growth dynamics and final yield across regions as well as within paddock (He et 
al, 2019). It is therefore essential to quantify the spatial variation in soil PAWC for reliable crop yield 
estimation and site-specific agriculture management in dryland areas where soil variability is high, such as 
Australia. However, accurate PAWC data at fine spatial resolution are not yet available due to the difficulties 
to directly measure soil properties across space with traditional soil sampling methods. 
 
Previous studies showed that wheat yield increased with PAWC (Wong and Asseng, 2006) with the rate and 
extent of increase dependent on year or climate type (Lawes et al., 2009). Another study in South Australian 
further showed that phenological metrics extracted from a vegetation index were strongly correlated with 
PAWC (Araya et al., 2016). Theoretically, an inverse modelling approach can be developed to predict soil 
PAWC with measured vegetation dynamics, or crop biomass/yield combined with climate data. 
 
In order to build such a modeling approach to predict PAWC, crop growth and yield on various soils with a 
wide range of PAWCs across climatic regions are needed. The limited field data from a few sites that are 
currently available do not allow extension of the results to large spatial scales. A modelling approach is 
better suited. He et al. (2019) developed a list of synthetic soils with a wide range of PAWC using soil 
texture classes and combined them with APSIM (Holzworth et al., 2014)  modelling to develop relationships 
between wheat yield and soil PAWC. Their approach can be extended to inversely predict soil PAWC from 
crop yield or crop growth dynamics.   
 
In this study, we attempt to extend the work of He et al. (2019) and (Araya et al., 2016) to examine the 
potential of using vegetation dynamics (e.g. crop LAI dynamics) to inversely predict soil PAWC, and to 
analyze the relative importance of climate and vegetation dynamics in inverse modelling.   
 
Methods 
APSIM model simulations 
Ten sites within Australia wheat belt were selected along a north-south and an east-west rainfall transect (Fig 
1). Across the sties, mean annual rainfall ranges from 382 mm to 647mm and rainfall patterns change from 
summer dominant (Emerald) to winter dominant (Ballart). We created 48 synthetic soil profiles using the  6 
soil texture  classes in the Australian Soil Resource Information System (ASRIS)  (Carlile et al., 2001) 
together with pedeotranfer functions (He et al., 2019). The soils have a PAWC range of 15 mm to 286 mm.  
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We used APSIM to simulate wheat daily LAI on each of the 48 soil profiles from 1889 to 2017 across the 10 
sites assuming sufficient nutrient supply. Due to the uncertain initial soil water conditions, the first 9 years 
simulation results were discarded. A total of 120 years of simulated LAI were used to construct vegetation 
metrics and train a machine learning model to predict PAWC from these vegetation metrics and climatic 
variables. 

 
Figure 1 Distribution of annual rainfall across Australia and the sites selected in this study. Along the North-
South (N-S) transect are Emerald, Miles, Narrabri, Young, and Ballarat. Along the East-West (E-W) transect 
are Young, Temora, Ardlethan, Yanco, Griffith, together with Merredin in West Australia (He et al., 2019).  
 
Vegetation metrics and climatic variables  
Nine vegetation metrics were calculated from the simulated daily LAI of wheat (Table 1) based on (Araya et 
al., 2016) who derived the metrics from NDVI time series. Crop growth in the previous growing season 
impact initial water conditions for the current growing season, so we further calculated 4 metrics from 
previous growing season. These vegetation metrics together with a list of climatic variables (Table 1) were 
used to train a machine learning model. 
 
Machine learning (ML) model 
A model based on machine learning with the Random forest algorithm was developed to predict PAWC for 
each of the 10 sites with two scenarios of inputs.  Scenario 1 (S1) used only vegetation metrics, while 
Scenario 2 (S2) used both vegetation metrics and climatic variables. The model was trained and tuned using 
a 10-fold cross-validation repeated 5 times in R 3.5.1 with 100-year dataset stratified sampling from the total 
datasets (120-year) grouped by annual rainfall. Accuracy of the model was tested by using the remaining 20-
years of independent datasets. We calculated the variable importance with the varImp function in the Caret 
packages in R software. 
 
Results and discussion 
Fig 2 shows the comparison of predicted PAWC using the metrics from two consecutive years and the actual 
PAWC. The skills of machine learning model built under S1 and S2 are similar, with R2 ranges from 0.29 to 
0.85. Climatic variables contributed little to improve model skills. The ML model built with only vegetation 
metrics explained over 75% of the variation of PAWC with RMSE less than 40 mm for summer rainfall 
dominated sites, with skills lower at the dry sites and winter rainfall dominated sites, like Merredin (RMSE = 
61.4 mm. R2 = 0.42) and Griffith (RMSE = 71.4 mm, R2 = 0.29) (Fig 2). Even though there is large 
uncertainty in some winter rainfall dominated sites. It still implies that in some typical years LAI dynamics 
of crops grown under nutrient non-limiting conditions can be used to prediction PAWC under contrasting 
climate conditions, particularly for sites with summer dominant rainfall or high rainfall. Prediction skills can 
be improved in some representative years.  
 
The relative importance of vegetation metrics is similar across sites. Leaf area duration (LAD), Leaf area 
duration after the maximum LAI (LADS2) in the current and previous seasons are the most important 
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vegetation metrics to predict PAWC. For the dry sites, i.e. Merredin, Griffith and Yanco, LAI change rates 
also become important (Fig 3).  
 
Table 1. Vegetation metrics, climatic and bioclimatic variables used in model training. 

Variable type Variable Definition 
Vegetation 
metrics in 

current year 

LAIMax Maximum LAI 
LAIMaxDay Days from sowing to maximum LAI 

LAIMaxDayafter Days from maximum LAI to maturity 
LAD Total LAI of this growing season 

LADS1 Total LAI before reaching maximum LAI 
LADS2 Total LAI after reaching maximum LAI 

LADRate TLaiS1 - TLaiS2 
LAIIncreaseRate Maximum LAI/LAIMaxDay 
LAIDecreseRate Maximum LAI/LAIMaxDayafter

vegetation 
metrics in 

previous season 

LaiMaxpre Maximum LAI in previous growing season 
LADpre Total LAI of previous growing season 

LADS1pre Total LAI before reaching maximum LAI in previous growing season 
LADS2pre Total LAI after reaching maximum LAI in previous growing season 

Annual climatic 
variables 

TminTota Annual total minimum temperature 
TminMean Annual mean minimum temperature 
TmaxTota Annual total maximum temperature
TmaxMean Annual mean maximum temperature 

RadiationTota Annual total radiation 
RadiationMean Annual mean radiation

AnnualRain Annual rainfall 
Growing season 

climatic 
variables 

STminTota Growing season total minimum temperature 
STminMean Growing season mean minimum temperature 
STmaxTota Growing season total maximum temperature 
STmaxMean Growing season mean maximum temperature 

SRadiationTota Growing season total radiation 
SRadiationMean Growing season mean radiation 

SeasonRain Growing season rainfall 
Rainpattern Growing season rainfall/Annual rainfall 

RainDistribution RainBeforeLAImax – RainAfterLAImax 
RainBeforesow Rainfall before sowing 

RainBeforeLaimax Rainfall from sowing to maximum LAI 
RainAfterLaimax Rainfall from maximum LAI to maturity 

 

 
Figure 2.  Comparison of predicted and actual PAWC at the 10 study sites. The red dash line is linear regression 
line. The grey dash lines show 85% confidence interval. RMSE is root mean square error.  
 
Our results demonstrate the potential to predict soil PAWC using LAI dynamics under water limited 
condition with no other stresses. Our approach can be further extended to use LAI or NDVI dynamics 
derived from remote sensing data for prediction of soil PAWC at corresponding spatial skills. In reality, 
uncertainties in management practice, nutrient and other stresses may occur, which could complicate the 
model and lead to lower prediction skills. Nonetheless, our results imply that skilful PAWC predictions can 
be potentially made from more accurate measurement of LAI dynamics of crops, which is an easier and less 
expensive alternative to traditional soil sampling method. 
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Figure 3.  The relative importance of vegetation metrics in predicting PAWC.  
 
Conclusion 
This study reveals the potential to use machine learning model to predict PAWC using LAI time series of 
crops under nutrient non-stressed conditions. Under such conditions the model with vegetation metrics could 
explain over 76% variation of PAWC across summer rainfall dominated sites. Leaf area duration (LAD), 
Leaf area duration after the maximum LAI (LADS2) in the current and previous growing seasons are the 
most important vegetation metrics for PAWC estimation.  
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