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Abstract
Soil water balance models provide input to models of agricultural and natural systems that inform soil and 
crop management. Independent empirical testing is needed to establish their reliability and accuracy.

We consider and contrast statistical methods used to test models, and highlight some common errors. Our 
metric of model accuracy is the skill (R2) in predicting the gain in soil water (mm) from the start to the end 
of summer fallows. APSIM is benchmarked against Fallow Efficiency (FE), which requires only a single 
parameter. APSIM was supplied with detailed definitions of the starting conditions, the soil, tillage and 
meteorological conditions.  

FE was poor at predicting fallow gain in soil water. APSIM was much better, simulating the fallow gain in 
soil water for two tillage treatments at Greenmount (residues burnt and zero till) with R2 of 0.5 and 0.65 
with respect to the observed=predicted line. As expected the lines of best fit (predicted = a + b.observed) 
had higher R2. For a mean observed gain in soil water of 108 mm the mean absolute errors across the two 
treatments were 26 and 47 mm for APSIM and FE respectively. APSIM had no skill (R2<0) in predicting the 
amount of extra soil water (mm) stored by the zero till treatment.
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Introduction
Soil water models combine mathematical functions that represent infiltration and runoff, potential and 
actual soil evaporation and transpiration, soil water extraction and redistribution, deep drainage and other 
processes. With several co-dependent processes being simulated, and sub models that are usually developed 
independently, it would be a mistake to assume that these models are accurate. With many parameter choices 
affecting the results, it is also a mistake to assume that a user, even a highly skilled user, can obtain accurate 
and reliable results. There was no adjusting, “tuning” or “calibrating” of any parameters to fit observations. 

These models are important. APSIM (Keating et al. 2003), PERFECT (Littleboy et al. 1989) and HowLeaky 
(McClymont et al. 2015) have been used to simulate crop yields (e.g. Whitbread and Hancock 2008), runoff 
and erosion (e.g. Thornton et al. 2007 ) and deep drainage (e.g. Robinson et al. 2007) respectively. Their soil 
water balances have all been developed from earlier models such as CREAMS (Knisel 1980). Testing the 
accuracy of the eminent agronomic model APSIM is therefore an appropriate case to investigate.  

How can accuracy be assessed? Scatterplots of observations and model predictions are popular, combined 
with an r2 or root mean square error (RMSE). For example, Whitbread and Hancock (2008) found that “A 
regression of the predicted against observed yields result in an r2 = 0.66 and RMSE of 0.64 t/ha, n = 35 (Fig. 
2a)”. However, soil water presents a special statistical problem. Simulation conditions including soil water 
are usually set equal to the observations at the start of the simulation, creating an artificial r2 of 1 at that 
time. The r2 declines over time during the simulation period as the artefact of initialisation is diluted. Short 
simulations such as fallows, with widely varying starting conditions are especially affected by this effect. 
Unfortunately, these were the conditions under which the soil water balance (SoilWat) in APSIM (Probert 
et al. 1996) was “validated”. In this study we improve model testing by plotting changes in observed and 
predicted soil water, eliminating the artefact of initialisation and subsequent auto-correlation.
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Methods
The two statistical approaches (r2 for the line of best fit and R2 for the 1:1 line) are applied to a case study 
from the Greenmount erosion and farming systems experiment.  Fallows are simulated to avoid testing the 
complexities of estimating transpiration and soil water extraction by roots.

(a)  Statistical methods
A scatterplot of observed data (x) against predicted or simulated data (y) is a common demonstration of 
model fit. Perfect correspondence between the two datasets results in the data (xi,yi) falling on a line where 
y = x with a coefficient of determination (r2) of 1. An r2 or R2 value is commonly quoted for the line of best 
fit between x and y, according to y = a + b.x. However the desired relationship is y = x. This is an important 
difference, as we shall demonstrate. 

Although sometimes confused, the statistic r2 is only used for the line of best fit (y = a + b.x), where it is 
equal to the correlation coefficient r squared, while R2 is a generic indicator of goodness of fit that can be 
applied to any relationship, including our y = x. For all relationships other than the line of best fit r2 will 
be greater than R2. We calculate both the r2 and R2 for y = x. We also calculate the mean absolute error 
(mean|observed-predicted|), which is probably a little easier to interpret than the RMSE. 

We have used the standard method of calculating R2, shown in Equation 1. The parameters are the predicted 
data yi, with a mean of y-, and the corresponding data for the fitted function fi .

R2 = 1 - SSerror / SStotal                                                                                                                       …(1)
where   SSerror= ∑i(fi- yi)2

and        SStotal= ∑i(yi- y ̅ )2    

(b)  Greenmount fallows
Each of the soil water measurements is the mean of 9 gravimetric samples (5 cm cores) distributed spatially 
through a treatment in 3 groups of 3 (end, middle, end). The bulk density was measured in each soil layer. 
The volumetric water contents were downloaded from http://www.howleaky.net/ for 2 types of fallows at 
Greenmount (Burnt and Zero Till), summarised in Table 1. Fallow length as shown in Table 1 is the number 
of days between the first post-harvest soil water measurement and the last pre-plant measurement. 

Table 1. Characteristics of summer fallows at the Greenmount site (data from http://www.howleaky.net/index.
php/library/supersites/97-library/site-summaries/cropping/greenmount/146-greenmount-level-4).

Burnt treatment Zero till treatment
mean (range) mean (range)

Fallow length (days) 151 (76 - 242) 126 (78 – 199)
Fallow rainfall (mm) 268 (63 - 468) 304 (95 – 305)
Soil water gain (mm) 114 (10 - 210) 103 (36 – 248)

(c)  Simulation methods
APSIM accounts for 75% of publications concerning crop simulation in Australia (Robertson and Carberry 
2010) and was therefore chosen to represent the cohort of Australian soil water balance models. Version 7.7 
(build 11 Dec 2014) was used via the standard user interface. Each fallow was simulated separately, with the 
simulated soil water being reset to the observed amount on the date of first measurement after the harvest 
of the wheat crop and observed and predicted gains were calculated from that time. The burning of crop 
residues was simulated in APSIM using the relevant date and tillage option. 

The FE method equates fallow soil water gain to 25% of fallow rainfall. Efficiencies of 20% and 30% were 
also calculated. The changes in r2 and R2 values were small because the predictions change in unison.

(d)  A note of caution
The models are being tested by comparison with observations that are not free from error. David Freebairn (pers. 
comm.) found a standard deviation of 60mm of measured soil water at a small site with apparently uniform clay soil. 
There are also uncertainties that change through time; the longer that a site is monitored, the wider the likely spread 
between the observed upper and lower limits, affecting the simulation model parameters. How long should a paddock 
be monitored to estimate the limits of soil water? A more complete analysis should be made elsewhere. Suffice to say 
that investigating the veracity of both the observations and predictions is important.
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Results
Figures 1 and 2 show the observed and predicted results from the two treatments at Greenmount.  Relative to 
APSIM, the fallow efficiency method is a poor predictor of the gain in soil water. 
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Figure 1. The observed and predicted data for the Burnt treatment. 
 

  
Figure 2. The observed and predicted data for the Zero Till treatment.  
 
Figure 3 shows the observed differences and APSIM’s predicted differences between Zero Till and Burnt. 
The slope of the line of best fit (0.47) is much less than the ideal slope (1.0). 

 
Figure 3. The observed and predicted difference between the Zero Till and Burnt treatments. 
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Discussion
We have established that the correct metric for judging models is the predicted change in soil water. The 
correlation between starting and finishing soil water excludes the use of soil water per se as a metric. 
The lines of best fit for APSIM have slopes well below the desired slope of 1 (0.59 and 0.78, Figures 1 and 
2). Consequently, there was a considerable difference in the r2 or R2 values for the lines of best fit (0.71 and 
0.76 for the two treatments) and the observed=predicted line (0.5 and 0.65). The lines of best fit for the FE 
model have low slopes (0.22 and 0.24, Figures 1 and 2). The R2<0 for the observed=predicted lines indicate 
that the mean observation () explains more of the variation in the observed values than the FE predictions. 

The artificially high r2 values for the lines of best fit overestimate the accuracy of both models; APSIM by a 
moderate amount (R2 inflated by 21% and 11%) and FE by a large amount (R2 inflated by 22 and 24%).  

For a mean observed gain in soil water of 108 mm in these fallows, the mean errors (absolute) for the two 
treatments were 26 mm for APSIM and 47 mm for FE. The largest errors (absolute) were 69 mm for APSIM 
and 127 mm for FE. APSIM had no skill (R2<0) in predicting the amount of extra soil water (mm) stored by 
the zero till treatment relative to the burnt treatment. Are APSIM users aware of this lack of skill? 

The APSIM model is clearly better in this case than the FE model. This is not too surprising given that 
evaporation and runoff vary between fallows in ways that FE may not represent. The single, lumped 
parameter of the FE model appears insufficient to represent the diverse physical processes of soil water 
storage, while the dozens of parameters of APSIM and similar models can better represent these processes. 
Further research is required to establish which parts and parameters of APSIM-like models are critical to the 
task of predicting soil water storage and which, if any, are unnecessary or unnecessarily complicated. 
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