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Abstract 

Daily crop simulation models that use rainfall, temperature, solar radiation, evaporation and CO2, can be 
employed to study the likely effects of climate change on crop production. However, current global 
climatic models generally operate on a mean-monthly basis and must be downscaled to meet the daily 
input requirement of the crop models. A method used in Victoria, involves scaling historic daily climate 
sequences by derived mean-monthly spatial patterns of climate change per degree of global warming. 
This paper presents a method of generating point-source climate-changed data and the subsequent 
interpolation of this data across space resulting in daily, gridded, spatiotemporal climate data that can be 
utilised in crop simulation models. Two methods of applying the climate changed data to analyse crop 
response are discussed. An application analysing crop response to climate changed data across Victoria 
is presented. The application has been developed as part of the current Victorian Climate Change 
Adaptation Programme (VCCAP) using climate generation, crop modelling and hydrological components 
of the Catchment Analysis Tool (CAT) landscape model. 
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Introduction 

In an analysis of the impacts of climate change on crop yield, Anwar et al. (2007) demonstrated an 
approach to downscale global climate predictions resulting in daily climate projections that were used to 
estimate the impact on crop yield at a point location. The approach removes historic trends from daily 
climate sequences then scales them so that the mean-annual response matches future climate 
predictions. As a consequence, there is an identical pattern between the future climates and the 
detrended set of historical data. Limitations of this approach are well documented in Anwar et al. (2007), 
the most significant being that it does not try to predict any change in the intensity or frequency of 
weather events. Whilst acknowledging the limitations, this method of climate generation has two 
advantages over stochastical climate-models when used to simulate crop-yield at a catchment scale. 
First, because of the identical patterning between historical and future climate sequences the response of 
two individual future years can be compared to make a judgment about the impacts of the mean change 
in climate. Second, the method maintains the historic relationship between rainfall, temperature and solar 
radiation. The lack of this relationship was identified as a possible limitation of existing stochastic 
methods by Timbal et al. (2009), “[stochastic] … downscaled predictand series are constructed 
independently from one variable to another. This is a possible limitation for impact studies that require 
several predictands (i.e. rainfall and temperature)”. 

A number of methods exist to spatially scale point-source climate data. The simplest approach involves 
assigning the point-source data to a localised area around the climate station. More complex methods of 
spatial interpolation operate on a daily basis and use splining and kriging techniques to account for 
changes in climate due to elevation (Jeffrey et al. 2001). Our approach combines elements of both of 
these methods; daily data are assigned to a localised area then given more spatial complexity by scaling 
each grid point so that the mean-annual response matches an interpolated mean-annual spatial layer. 
The advantage of this technique is that it provides a relatively simple way to generate smoothed climate 
sequences across the catchment whilst capturing elevation based changes in the magnitude of rainfall, 
temperature and solar radiation. Additionally, as the spatial scaling remains fixed for all climate 
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generation we can be assured that any change in crop response under a future climate is not because of 
a change in the spatial interpolation. In summary, the expectation was that the daily downscaling of global 
warming projections could be applied spatially across a catchment to show the potential trends in crop 
yield in a climate changed environment. 

Methods 

Generation of climate changed data 

In 2001 the International Panel of Climate Change (IPCC) released a series of global warming scenarios 
describing future emissions of greenhouse gases and aerosols based on different socio-economic 
assumptions. This resulted in a series of projected global temperatures for the various scenarios. In 
addition to this, CSIRO developed CCAM, a global atmosphere-only model to account for the regional 
impacts of climate change by predicting the mean-monthly pattern of change per degree of global 
warming for temperature, rainfall and solar radiation across Australia. The IPCC Global Warming Factors 
(GWF) and the CCAM Pattern of Change Data (Pat) were combined in a daily downscaling technique 
developed by CSIRO Marine and Atmospheric Research and described Anwar et al. (2007). A summary 
of the method is now detailed.  

Daily reference data for minimum and maximum temperature, rainfall and solar radiation were defined 

as the historical climate sequences from year to (typically 1935 to 1990). Daily-monthly reference 

data were extracted for a given calendar month . A linear regression-line was 
fitted to the mean-annual (MA) daily-monthly reference data versus the projection year. The daily-monthly 
data were detrended, 

(1) 

where were the daily-monthly reference data, , the gradient of the linear regression line and , 
the reference year. The detrended data were centred around zero, 

(2) 

with , the mean of the detrended sequence . A baseline value ( ) was calculated for the year 
1990 for each calendar month to anchor the projections to the IPCC reference year of 1990. 

(3) 

The future maximum and minimum temperature projections were then calculated as a value shifted from 
the baseline year. 

(4) 

where were the daily-monthly detrended data between and , , the baseline value 

calculated for each calendar month, , the pattern of change value defined at the co-ordinates of the 

reference data for month and , the global warming factor predicted by the IPCC for the future 

year . Rainfall and radiation were scaled from the baseline year 



(5) 

The monthly-daily data were then recombined to form the full daily climate changed sequence. 

Methods of applying climate changed data 

Two methods of applying the climate changed data were considered in terms of their ability to establish 
trends in crop yield due to climate change. In method A the annual global warming factor was 
incrementally increased with each year of the detrended data. In method B one global warming factor for 

year was applied to the entire detrended trace. For method B the future maximum and minimum 
temperature projections were effectively calculated as 

, (6) 

and the rainfall and radiation projections were calculated as 

. (7) 

Spatial scaling of point-source climate data 

The point-source climate data was spatially scaled according to interpolated mean-monthly surfaces 
generated using the ANUClim software (Hutchinson 2001). The ANUClim software combined a Digital 
Elevation Model (DEM) and temporal climatic data (1975 to 2005) to generate smoothed mean-monthly 
rainfall, minimum and maximum temperature, potential evaporation and solar radiation surfaces. The 
smoothed layers had the same spatial resolution as the input DEM (typically between 10 m and 1 km). To 
reduce model complexity, filtering tools within the CAT interface allowed for user-specified banding of the 
ANUClim layers, for example, 10 mm banding for rainfall, with the mean value applied across the band. 
The ANUClim surfaces were used to generate mean-monthly spatial scaling factors that were then used 
to scale the point source historic or climate changed data across space on a daily basis. Spatial rainfall, 
radiation and evaporation scaling factors and temperature shift factors were calculated as 

(8) 

where was the banded mean-monthly ANUClim layer for month m and 

was the mean-monthly value of the point-source Bureau of Meteorology (BOM) data at 
the Climate Station (CS).  

Results and Discussion 

To demonstrate the use of spatiotemporal climate-change data for crop simulation, point-source climate 
change data was generated from the historic climate sequences of approximately 700 climate stations 
across Victoria. The daily historical point-source climate station data was sourced from the Queensland 
Department of Natural Resources and Environment‟s SILO „Patched Point Data‟ service (Jeffery et al. 
2001). The data was generated using the Catchment Analysis Toolkit (CAT) climate change module, 
CATCLIM which applied the above method in a batch process to generate future climate data files 
(Weeks et al. 2008). Mean annual global warming factors and CO2 levels were taken from the IPCC A1FI 
scenario; an extreme-case future scenario reliant on the use of fossil fuels (IPCC 2007). Figure 1 shows 
the 2050 mean growing season rainfall as a percentage of the 2000 mean growing season rainfall and 
the difference in mean annual crop yield due to climate change for a slow-developing cultivar type (cv. 
Mackeller) sown in early July. Crop modelling predicted an increase in yield across most of Southern 



Victoria attributed to the warmer winters combined with the beneficial effects of CO2 fertilisation expected 
under climate change. North Western Victoria had the highest projected percentage decrease in rainfall, 
which correlated to areas of decreased yield indicating that limited water availability could begin to restrict 
crop growth in this region. The application demonstrates the ability of the model to spatially represent 
trends in crop yields across Victoria, showing causal links between rainfall, temperature, CO2 and crop 
yield.  

  

a) b) 

Figure 1 a) 2050 growing season rainfall as a percentage of the 2000 growing season rainfall 
(defined as July to December) and b) Difference in and crop yield under the A1FI climate change 
scenario for a slow-developing wheat cultivar type between years 2050 and 2000.  

In the crop modelling application the climate data was applied using method B where the year 2050 
global warming factor was used to scale the entire detrended trace then an average crop yield was 
calculated over all the years of the detrended trace. This process was repeated for the year 2000 and the 
difference in average yield reported. A problem with method A, where the annual global warming factor 
incrementally increases with each year of the detrended data, is that the year to year variability of climate 
often far exceeds the shift expected under climate change. To clarify this point, Figure 2 shows the two 
methods of downscaling temperature data. In method A, each year of detrended data corresponds to the 
actual years 1990 to 2050. A crop yield could be calculated for each of these years but the difference in 
yield between any two years could not be attributed to climate change because there is so much 
variability in the mean climate sequence between years. By using method B, the impacts of climate 
change are assessed by considering the shift in the distribution of crop yield under a future climate. The 
application of method B removes error associated with inter-year climate variation by downscaling all 
historic years using a constant global warming factor then considering the mean crop response over all 
detrended years. 



 

Figure 2) Example of the downscaled mean temperature for March showing Method A (red line) 
using an incremental GWFyt, where the detrended years correspond actual years 1990 to 2050 and 
Method B (green and blue lines) that scales the detrended data by the fixed GWF1990 and GWF2050 
respectively.  

Conclusion 

We designed our climate generation method to spatially scale climate data on a daily basis to allow crop 
simulation models to be applied across catchments and assess the impact of climate change without the 
confounding of climate variability. We have confidence that we have met these expectations because we 
have been able to generate climate sequences across all of Victoria and have used these sequences to 
assess the impact of climate change on crop yield. A major strength of this method is that it retains 
historic daily climate patterns to allow the causal links between rainfall, solar radiation, temperature, CO2 
and crop yield to be determined. Therefore, the implications for crop modelling are two-fold. First, point-
scale crop models requiring daily climate inputs can be applied across a whole catchment by using this 
spatial scaling method. Second, this approach combined with techniques of downscaling global warming 
predictions allows us to assess the impacts of climate change, accounting for spatial and temporal 
variability of climate at a catchment scale. 
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