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Abstract 

Within Western Australia, yield mapping reveals that wheat yield varies spatially between 0.4 to 4.0 t/ha 
within the paddock and by applying economic analysis we have shown that some parts of the paddock 
are consistently operating at a loss. This variability occurs in a farming system characterised by 
inadequate water use that is responsible for rising saline ground water table. Indeed, some water balance 
modelling suggests that up to 50% of the wheatbelt landscape might need to be reassigned to an 
alternative land use having perennial vegetation in order to have a useful impact on salinity. The 
Dempster-Shafer Weight-of-Evidence model offers a rigorous methodology for assigning land use based 
on independent lines of evidence. We used this model in a case study at Three Springs to identify areas 
suitable for cropping and those that might be reassigned to alternative uses. The model used maps of 
historical gross margins, soil property, drainage values, soil type, remotely sensed biomass and 
proximally sensed gamma-ray emission as evidence. These maps were then converted to fuzzy sets to 
include varying degrees of expert judgement and hard data evidence to define which areas are suitable 
for cropping. By focusing on profits and environmental outcomes, the model has the potential to facilitate 
the adoption of land use change based on the combined contributions of the grower and discipline 
leaders. 
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Introduction 

The productivity of grains / sheep farming in the Mediterranean region of Southern Australia is limited by 
insufficient rainfall. Paradoxically, the sustainability of this farming system is undermined by insufficient 
water use leading to raising saline ground water table and the onset of secondary salinity. The reason for 
this paradox is that the land is occupied for cropping for only half of the year. It remains bare for the rest 
of the year when water use falls short of that used by native vegetation. A third of the agricultural 
landscape of Western Australia is at risk and options to solve this problem include engineering and plant-
based solutions. Our model estimates suggest that up to half of the landscape may need to be 
revegetated to perennial plants in order to decrease deep drainage to values comparable with those of 
native vegetation. This scale of land use change is massive and is unlikely to be adopted unless it is 
profitable to the farmer. The first question asked is where do we start revegetating the landscape. The 
answer to this question must include the farmer and be based on a transparent decision process that 
uses the best lines of evidence on productivity and environmental performance. Both these factors are 
highly variable spatially. Grain yield ranging from 0.4 to 4.0 t/ha is commonly measured at paddock scale 
resulting in some areas of the paddock operating at a loss. At the same scale, model values of deep 
drainage range from 12 to 25 mm due to spatial variability in soil type, water holding capacities and depth 
of root penetration. This spatial variability offers the opportunity to identify the worst performing areas for 
re-assignment of land use that is economically and environmentally beneficial. Our aim is to develop a 
decision process for land use change based on our intimate understanding on the financial performance 
of the paddock derived from several years of yield mapping and analysis of land suitability for cropping 
based on different layers of evidence. 

The experimental site 
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The experiment was performed on paddock H10 on Rex Heal’s property in Three Springs, WA. The 
paddock is about 70 ha and had a wheat-lupin-wheat rotation since 1998. The year 2000 was the driest 
year and 1998 received near to the long-term seasonal average rainfall for the region. Paddock yield was 
measured on each occasion with an AgLeader yield monitor and was pre-processed and extrapolated to 
yield maps using the Achiever software. Soil was sampled on the paddock, analysed and maps of 
potassium, organic carbon content and nitrate release were made using Inverse Distance Weighting 
interpolation in ArcView. In addition a Normalized Difference Vegetation Index (NDVI) image for mid-
August 2000 and a soil map were also available for the paddock. The soil type map was used to estimate 
deep drainage based on a pedotransfer function developed using the DSSAT model (Zhang and Wong 
unpublished dada). Proximal sensing was used to map gamma-emission from 

40
K. 

Weighted Linear Combination of Yield and Gross Margin Evidence 

Yield varied spatially and from year to year according to seasonal conditions, type of crop grown and the 
match between the land capability and its use. In spite of these changes, some common themes occurred 
on the yield and gross margins maps (Figure 1). Since yield depends primarily on available water the map 
reflects the underlying relationships between water availability and soil types and topographic location in 
the landscape. Although soil types and topographic locations are fixed, the spatial pattern of yield 
measured by yield mapping changes every year, which introduces an uncertainty about the boundaries 
between the good and poor performing areas. The conversion of the yield maps into fuzzy sets allows us 
to deal with this uncertainty (1). A monotonically increasing sigmoid membership function was used to 
derive fuzzy sets from the calculated gross margins. The fuzzy gross margin maps show which of the 
poor performing parts of the paddocks were consistently operating at a loss each year irrespective of the 
crop grown.  

 

Figure 1. Suitability for cropping based on fuzzy allocations of gross margins. Dark areas are less 
suitable and green areas most suitable. The maps are for 1998 (left) to 2000. 

The fuzzy sets for 1998 and 1999 were then overlayed on that for 2000 in IDRISI using the Weighted 
Linear Combination technique. The weights used for the different fuzzy sets were derived as 
Eigenvectors from pair wise comparisons of the fuzzy sets ranked according to how close the seasonal 
rainfall was to the long-term average (2). Figure 2 shows the result obtained when the worst one third of 
the land is removed from production. This figure was trimmed to remove areas less than 2 ha since it 
would be impractical to manage such areas individually. 

 



Figure 2. Land classification zones derived from Weighted Linear Combination of fuzzy sets of 
gross margins for 1998-00. The dark areas have a greater degree of unsuitability for cropping. 

Multi-Criteria Evaluation using Dempster-Shafer Weight-of-Evidence method  

Past yield performance is not a full indicator of future performance. Including additional evidence, where 
relevant, could decrease the risk faced by the decision maker. For instance, some of the poor performing 
areas may simply be suffering from a simple chemical limitation such as local soil acidity or nutrient 
deficiency that can easily be ameliorated cost effectively. But other zones, such as areas of deep poor 
water holding sands that may be uneconomic to improve, and would be best reassigned to alternative 
uses. We used the following evidence in our example to assess suitability for cropping: 

1. Fuzzy sets derived from the gross margin maps for 1998 to 2000. 

2. Fuzzy sets derived from soil potassium map: In the strongly weathered soils of WA, the majority of 
topsoil potassium is in the exchangeable form. The amount of potassium increases with the clay content, 
which in turn gives rise to better water holding characteristics.  

3. Fuzzy sets derived from soil organic matter content: It is assumed that soil organic matter content is a 
controlling variable for soil fertility. Increased organic matter content increases suitability for cropping.  

4. Fuzzy sets derived from NDVI maps: It is assumed that higher biomass content is related to more 
suitable cropping sites since crops operate within a narrow harvest index range under normal seasonal 
conditions. 

5. Fuzzy sets derived from soil type maps: Some soil types for example, deep grey sands are inherently 
unproductive.  

6. Fuzzy sets derived from deep drainage maps: Highly leaky areas are deemed less suitable for current 
use. 

7. Fuzzy sets derived from gamma-emission from K-40. This map is similar to that of topsoil potassium 
but is cheaper. 

The model expert should use input from the farmer and/or agronomist to decide on the relationship 
between the evidence and its postulated effect. The Dempster-Shafer method (3) allows us to overlay 
each of these relationships to produce a map of degree of suitability for cropping (Figure 3). In this case, 
the different lines of evidence for good and poor performing areas were coherent and the potential 
cropping zones are confidently identified. We are extending this analysis to other paddocks where the 
balance of evidence is likely to be more complex because recorded yields differed from that expected 
from independent evidence.  

 



Figure 3. Land use zones derived from the Weight of Evidence model. Green areas have a greater 
suitability for cropping. 

Conclusion 

The use of fuzzy sets and weight-of-evidence modelling are powerful tools for rational land use 
assignment. It allows decisions about land use to be based on best available knowledge and evidence 
and so reduce the risks for farmers. Although, the method developed here can be extended to include 
knowledge from more experts and more disciplines, it is important to use the information we have now. 
We cannot afford to wait for a complete understanding of causal factors inducing within paddock 
variability to act against our pressing salinity problem. 
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