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Abstract 

Mobile electromagnetic (EM) induction technology coupled with accurate global positioning system (GPS) 
equipment offers realistic economic opportunities to map out areas of farms that are affected by subsoil 
constraints since electrical conductivity is well correlated with high soil water and salt content. We 
examined the technical feasibility of using mobile EM38 with GPS to map out suspect subsoil constraints 
on four farms across the Murray Mallee (Balranald, Swan Reach, Waikerie and Walpeup). Different data 
loggers required different speed calibrations. Strong relationships between soil water (R

2
=0.61-0.93; 

RMSE=0.02 Mg/m
3
), chloride (R

2
=0.71-0.95; RMSE=35-248 g/m

3
) and to a lesser extent boron (R

2
=0.55-

0.83; RMSE=1.2-3.1 g/m
3
) were found with EM38 measurements and large areas of the fields at 

Balranald and Walpeup were discovered to have substantial subsoil constraints. At Swan Reach linear 
relationships between EM38 measurements and yield maps varied from year to year from poor (wheat in 
2001, R

2
=0.08) to moderate (barley in 1999, R

2
=0.25 and Triticale in 2000, R

2
=0.31). A stronger 

relationship occurred between barley in 1999 and triticale in 2000 with R
2
=0.52. Analysed together, a 

collection of yield and EM38 maps and simulation models, this technology offers significant advances to 
help farmers identify and manage subsoil constraints on a spatial basis in individual fields. 
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Introduction 

Recent studies in the Mallee region of Australia have raised the question of how to identify and manage 
constraints to crop production that relate to factors in the soil limiting root growth, water use and grain 
yield. These constraints have been both physical (e.g. compaction) and chemical in nature with the 
chemical constraints typically associated with high pH. Those soils of the Mallee that have high pH 
typically exhibit high salt and boron and crops often do not extract all the apparent available water by 
harvest. The variable nature of subsoil constraints across farm fields has been long recognised but little 
progress has been made in identifying and managing this variation for profitable outcomes. One of the 
reasons for this is the very high cost of grid sampling the soil to test for possible constraints. However, 
strong correlations exist between the various subsoil constraints and this has lead to single factors (e.g. 
ESP or salt) being used to measure spatial variation (1,2). This correlation is the basis for the use of 
electromagnetic (EM) induction technology in agricultural resource management (3). Such technology 
provides measurements of bulk soil electrical conductivity. Mobile EM38 coupled with accurate global 
positioning system (GPS) equipment offers more realistic economic opportunities to map out areas of 
farms that are affected by subsoil constraints that are related to high salt, since electrical conductivity is 
well correlated with soil water and salt content. This is particularly encouraging for regions like the Mallee 
where high salt and poor water use of crops is widespread. Those soils of the Mallee that have high pH 
typically exhibit high boron and salt and crops often do not extract all the apparent available water by 
harvest (2,4). We examined the technical feasibility of using mobile EM to map out suspect subsoil 
constraints on four fields across the Murray Mallee. 

Methods 

Experimental sites 
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We selected four farm fields (40-100 ha) that had a history of yield maps and the farmers had intentions 
of continuing to map crop yield for subsequent crops across the Mallee Sustainable Farming Project 
region of the Murray Mallee (2). These were located near Balranald (lat. S 34? 45’, Long. E 143? 27’, 
elev. 78 m), Swan Reach (lat. S 34? 32’, Long. E 139? 45’, elev. 50 m), Waikerie (lat. S 34? 17’, Long. E 
140? 2’, elev. 62 m) and Walpeup (lat. S 35? 07’, Long. E 141? 59’, elev. 85 m). 

Yield and EM38 mapping 

Yield and position data were obtained from all farms from Case IH/AgLeader yield monitoring equipment. 
Geonics EM38 data (vertical and horizontal dipole) were collected after harvest (except at Walpeup) by a 
mobile data logging system supplied by contractors. One contractor used an OmniStar differential 
corrected Trimble GPS/TSC1 data logger whilst the other used an OmniStar differential corrected Fugro 
GPS/Fujitsu Stylistic 1200 Logging system. Transects were made at 10 m spacings and data collected at 
nominally 1 s intervals. Since the GPS antenna cannot be placed above the EM sensor, because of 
electrical interference to the EM signal, all data was position corrected for antenna offset (distance and 
velocity). The Geocentric Datum of Australia (GDA94) grid was used for all comparative map and 
statistical analyses. Position corrected EM38 data was kriged to a 5 x 5 m and 10 x 10 m grid with the 
Software Vesper V1.0c (5). We employed a punctual (point) spherical model with a local variogram using 
a minimum of 90 and maximum of 150 data points per grid estimate. The kriging interpolation provides 
estimates of the grid mean and variance. Crop yield data was kriged to a 10 x 10 m grid with the same 
model for EM38 but with 10 x 10 m block kriging procedure as this approximated the area supported by 
the yield measurements. The 10 x 10 m kriged grid was used for all statistical comparisons with other 
kriged data at these grid points while the 5 x 5 m grid EM38 data was used to print maps and locate 
points for further measurements of interest. 

Soil analyses 

Soil water, chloride and boron (hot CaCl2) contents were determined together with soil EC (1:5 extract) 
and pH (water and CaCl2) from selected positions determined from the EM38 map. The positions were 
selected to cover the full range of EM38 measurements. Individual or duplicate soil samples were taken 
with a 50 mm diameter core sampler at 20 cm intervals to 2 m at each site.  

 

Figure 1: Antenna offset correction for two GPS-EM Logging systems. 

Results 

Mobile EM38 data acquisition 

An essential requirement for mobile EM measurement was the need to correct for antenna offset. Figure 
1 shows the offset correction needed for each data logger. The Trimble GPS/TSC1 data logger’s 
acquisition time was 0.64 s and the zero speed offset was 2.8 m while the Fugro GPS/Fujitsu 1200 data 



logger was -0.50 s and the zero speed offset was 5.89 m. The importance of individual speed calibration 
for each logging system is obvious. 

EM38 Calibration against soil measurements 

Calibration accuracy of EM38 measurement against, vertical and horizontal, weighted profile soil 
measurement varied from site to site, but high Coefficients of Determination (R

2
) and low Root Mean 

Square Error of the residuals (RMSE) were achieved at all sites where high soil EC was measured (Table 
1). 

Table 1. Coefficient of Determination (R
2
) and Root Mean Square Error of the residuals (RMSE) for 

calibration of EM38 in the vertical mode for soil EC, water, chloride and boron content at each site. 

Site EC(1:5) dS/m Water (Mg/m
3
) Chloride (g/m

3
) Boron (g/m

3
) 

   R
2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE 

Balranald 0.96 0.15 0.93 0.02 0.95 248 0.67 3.1 

Swan Reach 0.44 0.06 0.61 0.02 0.71 35 0.55 1.2 

Waikerie 0.85 0.11 0.72 0.02 0.78 156 0.81 2.3 

Walpeup 0.86 0.09 0.88 0.02 0.93 92 0.83 2.5 

At Swan Reach where the poorest calibrations were obtained all soil measurements were very low. No 
significant relationship was observed with pH. Linear calibrations obtained highest R

2 
for EC(1:5) and soil 

boron content whilst curvilinear calibrations achieved significant higher R
2
 for soil water and chloride 

content with each inversely related. This is not unexpected since EM is related to both soil water and salt 
content, such that the relationship with soil EC is linear.  

Locating the spatial extent of subsoil constraints 

The strategy of measuring soil water and chloride after harvest in nominally dry conditions with EM38 
helps identify spatially where subsoil constraints occur, provided the crops matured into a terminal 
drought. This is because the most common constraint in the Murray Mallee is salt and is associated with a 
high water content because of its osmotic potential. Thus where, EM38 readings are high (>0.6 dS/m, 4) 
the water content at this location will reflect both the matric (clay) and osmotic (salt) water potentials and 
should be a direct measure of the lower limit of extraction of the preceding crop. Where salt is not high 
the water content will represent the matric potential only. 

Thus, using spatial maps of soil EC, chloride or boron together with soil water content we can identify 
potential areas of subsoil constraints in farm fields. Only one site (Balranald) had extensive areas above 
0.6 dS/m with marginal areas identified at Walpeup and very little evidence of high salt at the Waikerie or 
Swan Reach sites (data not shown). 

Relationships between EM38 and yield maps 

Preliminary yield analyses at one site (Swan Reach) show that linear relationships between EM38 and 
yield maps varied from year to year from poor (wheat in 2001, R

2
=0.08) to moderate (barley in 1999, 



R
2
=0.25 and Triticale in 2000, R

2
=0.31) (Figure 2). A stronger relationship occurred between barley in 

1999 and triticale in 2000 with R
2
=0.52. Since no significant subsoil constraints were present at Swan 

Reach weak relationships are expected, as the key factors would be temporal in nature. Indeed, the poor 
relationship between EM38 and wheat yield in 2001 will be partly due to the low EM38 areas being 
treated differently. Here, the farmer added more fertiliser and seed to this area in an attempt to overcome 
the very low (near zero) yield seen in previous years (e.g. barley in 1999). We plan to complete our 
analysis of the remaining sites and include more sites where subsoil constraints are greater and utilise 
simulation models to help remove the temporal effects of weather and management. 

Conclusion 

Progress to date is encouraging, as it is now possible to spatially identify subsoil constraints that are 
correlated with EM38 measurements at a sub-paddock scale. It is important that correction for antenna 
offset for speed is made and calibration with soil properties is made for each field because of different soil 
and management history. By measuring EM38 at harvest, where crop maturity occurs under terminal 
drought, maps of soil water lower limit of extraction can be made. Such maps can provide soil water 
extraction limits for application of simulation models on a spatial basis where the temporal effects of 
weather and management may be considered. 

 

Figure 2. Yield and EM38 (vertical dipole) maps from the same 50ha field at Swan Reach showing 
areas of low and high yield between crops in relation to EM38 measurements. 
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