PERFORMANCE OF PASTURE LEGUMES ON THREE CONTRASTING SOIL TYPES IN WESTERN VICTORIA

P.M. Evans and N.L. Cameron

Agriculture Victoria, Hamilton, Vic. 3300

Abstract

The production and persistence of a range of legumes species was evaluated in western Victoria at three sites: Hamilton, an acid basaltic clay receiving 700 mm average annual rainfall (a.a.r.); Lake Bolac, a neutral clay (550 mm a.a.r.) and Chatsworth an alkaline, saline clay (525 mm a.a.r.). Balansa and Persian clovers performed well at all sites and their production was equal to, or better than, subterranean clover in all harvests over 3 years. Balansa out-produced the best subterranean clover in all winter cuts. cv. Astred (a stoloniferous red clover) performed well in all sites but, together with arrowleaf clover which did well only at Lake Bolac, had poor winter production. Lucerne did well in the neutral soils regardless of salinity; subterranean clover failed in the saline soil. The Persian clover spp *majus* regenerated well at two sites but disappeared from Hamilton in the third year. *Melilotus* spp. were clearly the most productive in the saline soil but failed at Hamilton.

Key words: Pasture legumes, salinity, waterlogging, Trifolium, Melilotus, adaptation, regeneration.

Single species of pasture legumes are sown over large areas of Australia. For instance, at least 20 million ha are sown to subterranean clover (*T. subterraneum*) in southern Australia. Some disadvantages of using the same species for most situations are lack of adaptation to some ecological niches, lack of diversity and a single growing cycle that may lead to feed shortages in summer, autumn or winter. Sowing a variety of legume species provides diversity, both of species and manage-ment systems, and complements commonly used species by requiring grazing when traditional legumes should be spelled and vice versa.

Balansa clover (*T. michelianum*) has been shown to be salt tolerant in glasshouse studies (4) and Persian and balansa clovers have persisted well under waterlogging and mild salinity in Western Australia, (1, 2). However, the area of adaptation of these two species in Australia may not be restricted to waterlogged, mildly saline soils.

Hard grazing which is required after senescence to produce regeneration in small seeded annuals can provide excellent quality feed in early summer (6). Later on, perennial legumes such as red clover (*T. pratense*) and lucerne (*M. sativa*) and late maturing annuals such as arrowleaf clover (*T. alexandrinum*) or *Melilotus alba* may produce summer feed after earlier maturing annuals have been utilised.

The aim of this work was to examine the adaptation, in terms of production and persistence, of a range of legumes on three different soil types in western Victoria in relation to the most common subterranean clovers used in the area, Leura and Trikkala.

Materials and methods

Thirty five legumes were sown at Hamilton, Lake Bolac and Chatsworth on the following dates: May 23, 25 and 26, 1995, respectively. The 25 most representat-ive treatments of all species used are shown on Table 1. An additional subterranean clover control, Clare (*Trifol-ium subterraneum* var. *brachycalycinum*), was planted at the two high pH sites because of its adaptation to these conditions. The soil at Hamilton is a basaltic clay of low conductivity and a pH (CaCl₂) of 4.5, receiving an average annual rainfall (a.a.r.) of 700 mm. Lake Bolac is a fertile grey clay with low conductivity and a pH (CaCl₂) of 6.2. Its a.a.r. is 550 mm. Chatsworth receives 525 mm a.a.r., its soil conductivity in July was 1.33 dS/m (moderate salinity) with a pH (CaCl₂) of 7.4. Sowing rates were 10 kg/ha for all treatments. The seed was broadcast on cultivated ground with 300 kg/ha of 3:1 superphosphate:KCI fertiliser with Cu, Mo and Zn and then raked

lightly. Plots size was 2 x 2 m at Hamilton and Lake Bolac and 2 x 1 m at Chatsworth with 1m buffer strips between plots.

Species	Line/cultivar	1995		1996			1997		
		Winter	Spring	Regen	Winter	Spring	Regen.	Winter	Spring
Meðlotus alða	PAM19	588	4240	150	2148	8743	100	1343	2018
M alba	PAM20	422	3994	217	1828	8555	200	1261	2005
M indica	MIS1	408	3270	700	1850	8195	733	1394	1990
M indica	R99	688	3708	50	1700	9535	67	1677	2478
M indica	ST2	562	5106	234	1853	75B	550	1514	2620
M indica	ST1	562	4104	500	1828	7295	284	1451	1955
M indica	PAUM23	683	4954	117	1675	7423	417	1563	2283
T. subteraneum	Leura	463	3951	1967	2445	7840	7867	1921	2768
T. subteraneum	Trikkala	488	2353	1017	2130	7023	3567	1685	3108
T. brachycalycinum	Clare	402	4629	1134	3040	6928	3300	1476	1795
T. michedanum	Paradana	1741	5698	1767	3895	7955	18500	1908	3618
T. micheāanum	Bolta	1407	6758	24.50	31B	7350	23067	2650	4713
T. vesiculo sum	Tas663	808	6527	350	14:20	11188	517	1557	2448
T. vesiculo sum	Zibi	785	6910	550	1763	9965	2467	1924	2250
T. vesiculo sum	WA599	770	5674	1100	1393	8658	1817	1666	2073
T. pratense	Astred	368	4477	534	1393	11998	64	1000	2815
Г. тезиріналит	Maral*	1175	9976	833	2673	9010	3183	1101	2360
T. resupinatum	Morbulk*	2162	11209	900	2775	9845	4300	1334	2773
T. resupinatum	Kyambro	350	4779	2033	2303	10673	9733	2204	3380
T. resupinatum	Nino phu	506	4494	13.50	3433	7390	18800	2155	3265
T. resupinatum	Prolific	2306	6420	1100	3455	8203	8820	1628	2708
T. alexandrinum	Bigbee	1338	6941	717	3148	8395	1600	1177	2285
T. xerocephalum	X14946	1124	5759	517	1898	7743	2833	1321	2463
Medicago sativa	Southern special	422	2436	267	1448	9108	17	1427	2738
M sativa	AWE1	505	3250	400	2318	10168	167	1498	3010
եժֆ=0.05)		436	1329	645	910	1663	5317	530	893

Table 1. Production (kg/ha) and regeneration (pl/m²) of 25 entries representative of all 11 pasture legume species sown at Lake Bolac.

* Trifolium resupinatum spp majus

Seedlings were counted in six 10 x 10 cm quadrats per replicate in the first year and from five 5 cm diameter soil cores at Chatsworth and eight 5 cm diameter cores at Hamilton and Lake Bolac in years two and three. Dry matter production was assessed by cutting one 0.25 m² quadrat per replicate and oven drying the samples at 100 °C. The percentage of sown species was assessed visually in each plot. A single figure is given, one for winter and one for spring production, each year at Lake Bolac which is the sum of all harvests taken for that season. All experiments were grazed hard with sheep after each harvest and kept continuously grazed during summer and early autumn. In the second year at Hamilton, grazing continued during winter and early spring. Analyses of variance were performed on the data using Genstat 5.

Results and discussion

Establishment of most entries was satisfactory. Subterranean clover established poorly at Chatsworth possibly due to the saline conditions. Establishment of cvv. Nitro plus and Kyambro was poor due to low quality seed. These two Persian clovers improved in spring and regenerated well in 1996 and 1997.

At the first dry matter assessment at Lake Bolac (3/9/95) the Persian clovers Prolific and Morbulk, produced more than all other entries (Table 1). Morbulk is a newly registered *majus* type maturing ten days earlier than cv. Maral. A group comprised of the two balansa cultivars, berseem, Maral Persian clover and x14946 (*T. xerocephalum*) all produced above 1 t/ha in this first winter. Interestingly, the arrowleaf clovers had almost double the production of the subterranean clovers. With the same sowing rate, the larger subterranean clover seedlings did not seem to compensate for their lower numbers in the first three months after emergence.

	Hamilton					Chatsworth					
Line	1995	1996		1997		1995	1996		1997		
	Spring	Regen.	Spring	Regen	Winter	Spring	Regen	Spring	Regen	Spring	
PAM19	972	0	0	0	0	3771	250	185	270	1621	
PAM20	660	0	0	0	0	5233	400	130	262	1888	
MIS1	610	0	0	0	0	6460	6400	2775	1135	3569	
R99	572	0	0	0	0	3464	1600	1762	429	1682	
ST2	642	0	0	0	0	7990	5625	529	2024	757	
ST1	711	99	1250	50	25	83.50	11350	2048	1826	2496	
Pom 23	731	314	1320	100	25	7353	975	562	1421	1500	
Leura	3641	1337	3650	6733	1833	243	100	628	64	389	
Trikkala	2618	957	3663	1283	1088	603	100	276	63	282	
Clare	-	-	•	•	•	420	250	334	95	416	
Paradana	4736	1320	6788	15167	3496	4115	3377	1705	317	931	
Bolta	6833	825	6888	14883	3559	3985	4325	2807	611	1492	
Tas663	4936	132	2388	50	161	1405	375	40	79	648	
Zibi	4720	380	3588	484	384	2155	100	84	317	875	
WA599	3780	330	3613	134	328	1570	250	85	325	922	
Astred	4360	181	3675	167	315	1305	875	1823	151	2174	
Maral	4312	149	3700	0	0	2415	2150	1878	254	1020	
Morbulk	5088	182	31B	167	203	2718	1675	1882	238	1317	
Kyambro	3956	825	5463	8950	2290	988	3350	1305	1119	3111	
Nimphe	3241	776	5064	3150	2360	1058	1225	910	206	727	
Prolific	3715	611	3588	2183	2417	4468	1100	2399	389	2590	
Bigbee	5158	231	2675	33	127	2593	975	1488	87	1924	
X14946	2559	116	1963	150	199	2398	1125	102	32	166	
Southern special	770	0	0	0	0	445	400	1111	111	1901	
AWE1	933	0	0	0	0	1060	375	1711	87	2378	
եվ (p=0.05)	783	573	1437	2106	610	1235	2071	1327	510	1036	

Table 2. Production (kg/ha) and regeneration (plants/m²) at Hamilton and Chatsworth between 1995 and 1997 for 25 pasture legumes.

The Persian clover spp. *majus* produced significantly more in the first spring, the next best group had the balansas, Prolific, Big Bee, the arrowleaf clovers and *T. xerocephalum*. The latter set seed, but did not regenerate well at any site. The stoloniferous red clover Astred and the lucernes did not match the production of annuals in the first spring.

The Persians, balansas, WA599 arrowleaf and the subterranean clovers regenerated well in 1996 (Table 1).? Leura produced more seedlings than Trikkala and Clare despite the 1995 season receiving 573 mm. Its winter production was slightly higher than earlier flowering Trikkala, showing once more that, in subterranean clover, maturity has no effect on winter production. Paradana, Nitro and Prolific produced well over 3 t/ha of dry matter, suggesting these small seeded annuals can often produce more winter forage than subterranean clover following adequate regeneration. In spring, two very poor winter producers, Astred and Tas663 exceeded 11 t/ha. AWE1 lucerne and Kyambro Persian clover, however, produced well after reasonable winter production.

In 1997, Bolta, Nitro and Paradana showed massive regeneration. Not surprisingly Bolta also had the highest winter production. Even though Bolta is later maturing, its average advantage over Paradana in Spring at Lake Bolac was only 0.5 t/ha. Kyambro and Nitro plus continued to perform well in the dry 1997 Spring.

Large differences in adaptation between Hamilton and Chatsworth were observed. At Chatsworth all Melilotus and lucernes performed well but they failed at Hamilton (Table 2). At Hamilton, berseem clover performed well only in the first season while the Persian clovers spp. *majus* produce as much as Leura in the second spring, but regenerated poorly in the third season. Across all seasons Paradana and Bolta performed best, in terms of winter and spring production, and regeneration. They were followed by Kyambro, Nitro and Prolific and then Leura subterranean clover which, in turn, performed better than Trikkala. Two accessions of *Biserrula pelecinus* failed at Hamilton.

In the first spring at Chatsworth, the highest producers were *Melilotus*, especially the line ST1. Both *Melilotus alba* lines continued to grow after December, 1995, but were not assessed for production and the experimental area was grazed in mid-February 1996, so this late flowering species was not allowed to

set seed to its full potential. In 1996, the best regeneration was observed in *Melilotus*. Balansa and the Persian clovers had adequate plant numbers and the subterranean clovers failed. The experiment was grazed in late September, 1996, the balansas did not recover but the Persian clovers did. The poor regeneration of balansa clover in 1997 is attributed to this spring grazing. By 1997, *Melilotus*, Astred, some Persian clovers and the lucernes, especially AWE1 from Argentina, were performing well. The success of lucerne in this saline site at Chatsworth may be attributed to the absence of winter waterlogging during the experimental period.

These results confirm reports that *Melilotus* spp. tolerate salinity (3, 5) and that Persian and balansa clovers not only tolerate waterlogging and mild salinity (1, 2) but can also adapt to a wide range of climatic and edaphic situations. Their production at the three sites studied here was never lower than the best subterranean clover for the area and in many harvests significantly better, especially the balansa clovers in winter.

Acknowledgments

We are grateful to Ron Labbett and Bill Winter-Irving for kindly allowing us to conduct two of the experiments at their properties. Bill Feely provided excellent technical support during 1995. Financial support for the pro-ject is being provided by GRDC and IWS since July, 1997.

References

- 1. Evans, P.M. and Snowball, R. 1993. Proc. 7th Aust. Agron. Conf. Adelaide, pp. 53-56.
- 2. Evans, P.M. 1995. Final Report to IWS, WADA, Perth, Western Australia.
- 3. Le Houerou, H.N. 1986. Reclam. and Reveg. Res. 5, 319-341.
- 4. Rogers, M.E. and Noble, C.L. 1991. Aust. J. Agric. Res. 42, 847-857.
- 5. Rogers, M.E. and Evans, P.M. 1996. Proc. 8th Aust. Agron. Conf. Toowoomba, pp. 486-489.
- 6. Kenny, P.T. and Reed, K.F.M. 1984. Aust. J. Exp. Agric. Anim. Husb. 24, 322-331.