
Improved x-ray spectrometric method for determining glucosinolates

A. Pinkerton¹, P.J. Randall¹ and R.J. Mailer²

Glucosinolates are the most detrimental components in oilseed rape; their breakdown products in the high protein meal after oil extraction can adversely affect animal growth. The Australian oilseeds industry has adopted the Canola standard, i.e. <30 pmol/g of four particular glucosinolates in meal. A rapid method for determining glucosinolates in seed and meal of rapeseed and other oilseed brassicas is essential for screening cultivars in breeding programs and for analysing batches delivered for crushing.

Methods

A recently developed X-ray fluorescence spectrometric (XRFS) method (I) for determining oxidised S (S^{6+}) and carbon bonded S (S^{c}) in plant material utilizes the small SK wavelength shift with change in chemical bonding (oxidation number). A glucosinolate molecule contains two S atoms, one S^{6+} and one S^{c} (Fig. I). Protein contains only S^{c} atoms. Analysis for S^{6+} provides an estimate of glucosinolate content (Fig. I).

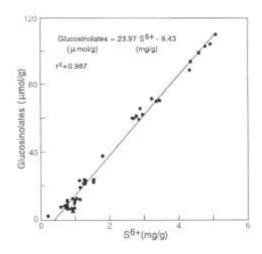


Figure 1. Principal S fractions in rapeseed.

Figure 2. Linear relationship between S⁶⁺ in rapeseed and total glucosinolates determined by glucose release (2).

Results and discussion

S⁶⁺ is highly linearly correlated with glucosinolate contents determined by chemical Methods (Fig. 2). Errors from inclusion of sulfate are small because sulfate, a small fraction of total S. is correlated with glucosinolates. The S⁶⁺ method is superior to an existing XRFS method (2) which uses total S because protein S. a large fraction of total S. is not correlated with glucosinolates.

References

4. Pinkerton. A., Randall. P.J. and Norrish. K. 1991. Commun. Soil Sci. Plant Anal. 20. 1557-1574.

¹CSIRO Division of Plant Industry, G.P.O. Box 1600, Canberra, A.C.T. 2601

²NSW Agriculture, Agricultural Research Institute, Wagga Wagga, NSW 2650

- 5. Mailer. R. and Wratten. N. 1985. Aust. J. Exp. Agric. 25. 932-8.
- 6. Wathelet. J.P., Wagstaffe, P.J. and Boenke. A. 1991. Report CD-NA-13339-EN-C. Office for Official Publications of the European Communities, Luxembourg.