Variation among sunflower genotypes in the delay in flowering caused by P deficiency

M.N. Hunter and A.N. McCosker

Q.D.P.I. Biloela Research Station, Biloela. Q. 4715

Phosphorus (P) deficiency in sunflower severely retards early growth (1, 2) and delays the onset of flowering (2). Where the delay is long enough, similar amounts of dry matter may be attained by previously P deficient plants by flowering time as by P sufficient plants (3). This delay response to P deficiency is thus seen as a useful mechanism whereby full recovery (in terms of dry matter at flowering) from early P deficiency can be achieved.

Methods

Six sunflower genotypes were sown in spring (17/9/85) and autumn (14/3/86) into a low P (10 mg/kg bicarb. ext. P) vertisol that had been 'bare' fallowed (some weed present in one replicate in February 1984) since 1982. Seed was placed in 2 m long rows previously banded with or without P (80 kg/ha). Fresh shoot weights were measured in 10 plants after the accumulation of 600 heat units (6 C base) and time to flowering recorded in remaining guard plants.

Results and discussion

Large responses in shoot fresh weight to P were evident in both plantings and genotype performance was influenced by P levels and planting date. Time to flowering was significantly delayed in the absence of added P, with the delay being much greater in the spring planting (9 days) than the autumn planting (3.5 days). The extent of the delay varied significantly among sunflower genotypes.

Such effects of P deficiency on flowering must be accounted for by agronomists, hybrid seed producers, plant modellers and breeders, particularly in environments such as central Queensland where P is rarely used despite the low levels of soil P. Selection of genotypes with a well developed flowering delay mechanism may be desirable for low P soils, where fallow length is uncertain and opportunist spring plantings occur.

Effect of planting date and phosphorus supply on shoot fresh weight and time to flowering in six sunflower genotypes

Planting Date (PD) P rate (kg/ha) Genotype (g/t)								
	Shoot fresh weight (g/plant)				Time to flowering (days)			
	Spring		Autunn		Spring		Autunn	
	0	80	0	80	0	Bo	0	80
Hyeun 33 Hyeun 32 Pion.02005 Suncrose 25 Hyeun 22 Dynamite	19 27 20 16 19 17	154 135 146 143 115 153	32 23 43 28 25 28	85 72 81 83 75 81	76 74 71 68 71 68	66 66 58 57 65	75 73 67 65 60 70	70 72 63 59 55 67
Sig. of Pactors and Interaction abown where **P<0.01 *P<0.05	P**(4,5) g/t**(4,1) P0*(24,5) Pxg/t**(5,9) PDxg/t**(5,9) PxPDxg/t*(8,3) LSD (P=0.05) in brackets				P**(1.2) PxPD**(1.7) g/t**(1.9) P0xg/t**(2.7) Pxg/t*(2.7)			

1. Spencer, K. and Chan, C.W. 1981. Aust. J. Agric. and Anim. Husb. 21:91-97.

2. Hunter, M.N. and McCosker, A.N. Proc. 10th Int. Sunflower Conf. 88-91.

3. Hunter, M.N., McCosker, A.N. and Hibberd, D.E. 'this conference'.