Annual rates of N₂ fixation by pasture legumes on the central plateau of Tasmania

P.A. Lane

C/- Hopkins Pty. Ltd., 315 Main Road, Clenorchy, Tasmania, 7010

The success of any sown pasture depends largely on the use of a suitable legume as a source of nitrogen. An extensive field study has been undertaken to assess the annual rate of N_2 fixation by two pasture legumes on the Central Plateau of Tasmania.

Method

An <u>in situ</u> acetylene reduction (AR) assay (1) and 15 N dilution technique (2, 3) were used to estimate N₂ fixation rates of two temperate pasture legumes, Caucasian clover (Trifolium ambiguum M. Bleb) and white clover (T. <u>repens</u> L.). growing in association with grasses at two locations on the Central Plateau of Tasmania.

The $^{15}_{N}$ dilution technique provided a means of calibrating the AR assay and the resulting ratios of C_2H_2 reduced to N_9 fixed were used to convert monthly estimates of nitrogenase activity to actual rates of N_2 fixation. By using this approach it has been possible to determine annual rates of N_2 fixation.

Results and Discussion

The majority of N_2 fixation was found to occur during periods of active growth from October through to January (Table 1). Factors such as low soil moisture in late summer and autumn and low temperatures (<5?C) over the winter months. severely limited N_2 fixation outside this period.

<u>Table 1:</u> Estimates of N_2 fixation by T. <u>ambiguum</u> and T. <u>repens</u> at two Sites on the Central Plateau of Tasmania (kg N/ha).

MONTH	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
SITE 1 Alt. 1035M T. ambiguum T. repens	20	2 1	20	12	6	0	0	0	0	20 23	81 57	72 30	223 138
SITE 2 Alt. 900M T. repens	12	3	6	11	5	2	3	3	11	54	65	37	212

Caucasian clover, which was only present at site 1 fixed considerably more N_2 than white clover at this site, despite having an extended period of winter dormancy. More N_2 was fixed by white clover at site 2 than at site 1, which was consistent with the slightly more favourable climatic conditions at site 2.

These estimates of N_2 fixation compared favourably with other reported estimates for temperate pasture legumes growing in similar climatic regions (2, 4. 5). It was concluded that rates of N_2 fixation in the range of 138 to 233 kg/N/ha/yr should be sufficient to mainta_in a productive permanent pasture not only on the Central Rlateau of Tasmnia but in most temperate regions of Australia where extensive methods of agriculture are practised.

- 1. Balandreau, J., and Dommergues. Y. 1973. Bull. Ecol. Res. Comm. (Stockholm) 17. 247-254.
- 2. Haystead. A., and Lowe. A.C. 1977. J. Br. Crassld. Soc. 32. 57-63.
- 3. Edmeades. D.C.. and Coh, G.M. 1978. N.Z. J. Agric. Res. 21, 623-628.

- 4. Masterson, C.L.. and Murphy, P.M. 1976. in "Symbiotic Nitrogen Fixation in Plants" (P.S. Nutman Ed.) IBP7, 299-316. Cambridge University Rress, Cambridge.
- 5. Roglund. J.H., and Brock. J.L. 1978. N.Z. J. Agric. Res. 21, 73-82